Article ID Journal Published Year Pages File Type
1717527 Aerospace Science and Technology 2016 11 Pages PDF
Abstract
Present study deals with the free vibration analysis of skew plates made from functionally graded carbon nanotube reinforced composites. Carbon nanotubes as reinforcements are distributed across the thickness of the plate. Distribution pattern may be uniform or functionally graded. The developed formulation from a Cartesian coordinate system is transformed to an oblique coordinate system to satisfy the boundary conditions. The virtual strain and kinetic energies of the plate are obtained using the first order shear deformation plate theory. Ritz method whose shape functions are developed according to the Gram-Schmidt process is implemented to construct an eigenvalue problem associated to the natural frequencies of the plate. The developed solution method is general and may be used for arbitrary boundary conditions of the plate. Results are compared for isotropic homogeneous and composite laminated plates in skew shape with the available data in the open literature. Afterwards numerical results are provided for skew plates reinforced with carbon nanotubes. It is shown that volume fraction of carbon nanotubes and their distribution pattern are both influential of natural frequencies of the carbon nanotube reinforced plates. Generally, the higher the volume fraction of carbon nanotubes, the higher the natural frequencies of the skew plate.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
,