Article ID Journal Published Year Pages File Type
1717903 Aerospace Science and Technology 2015 8 Pages PDF
Abstract

The aim of this paper is to design a globally robust and globally finite-time convergent attitude controller for a rigid spacecraft. Second order sliding mode control in integral sliding mode is proposed to design the controller. To eliminate the need of advance information about uncertainty and external disturbance bounds, the gains of the proposed controller are calculated using the adaptive laws. The second order sliding mode controller applied is based on geometric homogeneity approach. The finite-time stability is proved by using both the Lyapunov stability and negative homogeneity approach. Simulations are conducted for the attitude tracking and attitude stabilization under the effect of spacecraft mass inertia uncertainty and external disturbances; and the outcomes reveal the effectiveness of the proposed control method.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,