Article ID Journal Published Year Pages File Type
1729464 Annals of Nuclear Energy 2011 12 Pages PDF
Abstract

The present work discusses the calculation of the diffusion coefficient of a lattice of hexagonal cells, with both “sodium present” and “sodium absent” conditions. Calculations are performed in the framework of lattice theory (also known as fundamental mode approximation). Unlike the classical approaches, our heterogeneous leakage model allows the calculation of diffusion coefficients under all conditions, even if planar voids are present in the lattice. Equations resulting from this model are solved using the method of characteristics (MOC). Independent confirmation of the MOC result comes from Monte Carlo calculations, in which the diffusion coefficient is obtained without any of the assumptions of lattice theory. It is shown by comparison to the Monte Carlo results that the MOC solution yields correct values of the diffusion coefficient under all conditions, even in cases where the classic calculation of the diffusion coefficient fails. This work is a first step in the development of a robust method to calculate the diffusion coefficient of lattice cells. Adoption into production codes will require more development and validation of the method.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,