Article ID Journal Published Year Pages File Type
17345 Enzyme and Microbial Technology 2012 7 Pages PDF
Abstract

Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2–8). The astragalin glucosides exhibited 8.3–60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8–20.3% increased antioxidant effects, and 3.8–18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , ,