Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
17631 | Enzyme and Microbial Technology | 2010 | 5 Pages |
Enzyme spectrophotometric assays based on acetylcholinesterase (AChE) inhibition were used in combination with Artificial Neural Network (ANN) chemometric analysis for the resolution of pesticides mixtures of chlorpyriphos, dichlorvos and carbofuran. Electric eel (EE) AChE and the recombinant B394-AChE from Drosophila melanogaster were selected due to their different sensitivities to insecticides. These enzymes were used in association with phosphotriesterase (PTE), an enzyme allowing to discriminate between organophosphate and carbamate insecticides. The combined response of three enzymes systems composed of EE-AChE, EE-AChE + PTE, and B394-AChE + PTE was modelled by means of ANN. Specifically, an ANN was constructed where the structure providing the best modelling was a single hidden layer containing four neurons. To prove the concept, a study to resolve pesticide mixtures was done with spectrophotometric measurements. Finally the developed system was successfully applied to the determination of carbofuran, CPO and dichlorvos pesticides in real water samples.