Article ID Journal Published Year Pages File Type
17684 Enzyme and Microbial Technology 2009 8 Pages PDF
Abstract

Crude soybean peroxidase (SBP), isolated from soybean seed coats (hulls), catalyzes the oxidative polymerization of hazardous aqueous phenylenediamines and benzenediols in the presence of hydrogen peroxide. Experiments were conducted to investigate the optimum operating conditions including pH, hydrogen peroxide-to-substrate concentration ratio and the minimum SBP concentration required to achieve at least 95% conversion of these pollutants in synthetic wastewaters. The substrate conversion and hydrogen peroxide consumption were monitored over the period of the reactions. Polyethylene glycol (PEG) was ineffective as an additive in enhancing the conversion efficiency. The enzymatically generated polymeric products from phenylenediamines could be removed with the aid of a surfactant, sodium dodecyl sulfate (SDS), whereas the polyvalent metal cation salt, aluminum sulfate (alum), was able to remove the products from benzenediols, except hydroquinone. Enzyme-catalyzed polymerization with SBP and subsequent removal of the polymeric products generated can provide an alternative means to the conventional methods for treating many aromatic wastewater pollutants, including the title compounds.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,