Article ID Journal Published Year Pages File Type
1779477 New Astronomy 2010 8 Pages PDF
Abstract
Gravitational lensing calculation using a direct inverse ray-shooting approach is a computationally expensive way to determine magnification maps, caustic patterns, and light-curves (e.g. as a function of source profile and size). However, as an easily parallelisable calculation, gravitational ray-shooting can be accelerated using programmable graphics processing units (GPUs). We present our implementation of inverse ray-shooting for the NVIDIA G80 generation of graphics processors using the NVIDIA Compute Unified Device Architecture (CUDA) software development kit. We also extend our code to multiple GPU systems, including a 4-GPU NVIDIA S1070 Tesla unit. We achieve sustained processing performance of 182 Gflop/s on a single GPU, and 1.28 Tflop/s using the Tesla unit. We demonstrate that billion-lens microlensing simulations can be run on a single computer with a Tesla unit in timescales of order a day without the use of a hierarchical tree-code.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , , ,