Article ID Journal Published Year Pages File Type
1784253 Infrared Physics & Technology 2014 5 Pages PDF
Abstract
In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , , ,