Article ID Journal Published Year Pages File Type
1785542 Current Applied Physics 2015 6 Pages PDF
Abstract

The nanostructures found in nature sometimes have elaborate, three-dimensional structures that consist of soft and flexible constituents, and which exhibit diverse mechanical and optical functions. Here, we introduce a facile, low-cost and scalable nanofabrication approach based on a hot embossing process that can replicate sub-micron to nanoscale features on elastomeric substrates. We have further developed this technique to achieve polymer/metal heterostructure nanopillar arrays via conformal coating of Au films on polymeric templates. Each nanopillar displays a smooth surface and a constant diameter along the vertical direction. Raman spectroscopy studies revealed that the metallic nanostructures decorated with methylene blue exhibited a dominant Raman peak at 1624 cm−1 that was enhanced more than 3000 times and seven times relative to bare planar Si and Au-coated planar polystyrene substrates, respectively. These results indicate that our nanopillar array can be exploited as a flexible, large area platform for surface-enhanced Raman spectroscopy.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,