Article ID Journal Published Year Pages File Type
1785619 Current Applied Physics 2015 7 Pages PDF
Abstract
The electronic structures, magnetic properties and half-metallicity in Zr2IrZ (Z = Al, Ga, In) alloys with the Hg2CuTi-type structure were systematically investigated by using the first-principle calculations. Zr2IrZ (Z = Al, Ga, In) alloys are predicted to be half-metallic ferrimagnets which are quite robust against hydrostatic strain and tetragonal deformation. The total magnetic moment of Zr2IrZ (Z = Al, Ga, In) alloys mainly originates from the 4d electrons of Zr atoms and follows the conventional Slater-Pauling rule: Mt = Zt−18. (Mt is the total magnetic moment per unit cell and Zt is the valence concentration). The origin of the band gap for Zr2IrZ (Z = Al, Ga, In) alloys is also well studied. Unconventionally, Zr2Ir-based alloys contain element with 5d valence electrons, which implies a wider field to search for new half-metallic materials.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,