Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1785713 | Current Applied Physics | 2015 | 6 Pages |
•Sub-micron sized Bi2Fe4O9 cubes were analyzed by Mössbauer spectrometry.•The transition temperature of the magnetic phase is about 240–250 K.•The surface sites give identical Mössbauer signatures as interior sites.
Magnetic and Mössbauer characterization of single crystalline, sub-micron sized Bi2Fe4O9 cubes has been performed using SQUID magnetometry and transmission Mössbauer spectroscopy in the temperature range of 4.2 K ≤ T ≤ 300 K. A broad magnetic phase transition from the paramagnetic to the anti-ferromagnetic state is observed below 250 K, with the Mössbauer spectra exhibiting a superposition of magnetic, collapsed and quadrupolar spectra in the transition region of 200 K < T < 245 K. Room temperature Mössbauer spectra obtained in transmission geometry are identical to those recorded in back-scattering geometry via conversion electron Mössbauer spectroscopy, indicating the absence of strain at the surface. A small hysteresis loop is observed in SQUID measurements at 5 K, attributable to the presence of weak-ferromagnetism arising from the canting of Fe3+ ion sublattices in the antiferromagnetic matrix.