Article ID Journal Published Year Pages File Type
1785760 Current Applied Physics 2015 7 Pages PDF
Abstract
This paper presents an optimum design of a substrate-integrated cavity-type antenna for use in the terahertz frequency range. The antenna was designed with a frequency-selective surface (FSS) and a planar feeding structure that are both patterned on a high-permittivity gallium-arsenide substrate. The FSS, printed on the bottom side of the substrate, is made of a circular hole array that acts as a partially reflecting mirror. Meanwhile, the planar feeding structure, printed on the top side of the substrate, is a center-fed, open-ended slotline whose ground plane acts as a perfect reflective mirror; thus, it forms a Fabry-Perot resonator. The optimized antenna produced a maximum boresight gain of 14.3 dBi, a radiation efficiency of 62%, and side-lobe levels of −15.1 dB and −15.0 dB for the E- and H-planes, respectively, at a resonance frequency of 320 GHz. The proposed design exhibits compactness, planarity, and light weight compared with the substrate lens-coupled antenna design.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,