Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1786131 | Current Applied Physics | 2013 | 9 Pages |
A compact, repetitive Marx generator with an external trigger is constructed and coupled with a wire-to-plate corona reactor for a positive pulsed corona discharge studies. The reactor resistance and capacitance behavior during the pulse was observed. It was found that the reactor's capacitance increases three times during the pulse due to the streamer propagation from anode to grounded electrode. Using the time development of the capacitance and resistance during the pulse and the reactor inter-electrode distance, the streamer velocity has been calculated to be 1 × 106 m/s, for system arrangement presented in this work. As an indicator of chemical activity of pulsed corona, ozone production was measured. Emission spectroscopy measurements in the UV region were performed to detect species that appear in the discharge and to determine vibrational and rotational temperatures, which are found to be 3200 K and 340 K respectively. As a measure of pollution control potential of the constructed pulsed corona system, NO oxidation efficiency was investigated and compared with results presented in literature. It was shown that pulsed corona systems with significantly longer pulse durations are competitive with several times shorter pulse duration systems, which implies that chemical efficiency of secondary streamers is comparable with efficiency of primary streamers.
► Reactor capacitance rises during the streamer propagation. ► Streamer velocity can be obtained from the electrical measurements. ► Longer pulse duration has the same energetic efficiency like the shorter one.