Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1786221 | Current Applied Physics | 2014 | 8 Pages |
Abstract
We investigated the oscillatory behaviors of a square graphene-nanoflake (GNF) on a rectangular GNF via classical molecular dynamics simulations, and analyzed the energy exchange and the oscillation frequencies for three different modes. The simulation results using a model structure show that the GNF oscillator can be considered as a high frequency oscillator. As its initial velocity increases, its telescoping region increases, then its structural asymmetry along the axis due to own small rotation exerted asymmetric van der Waals (vdW) force on it, and finally, this asymmetric vdW force enhances its rotational motions during its axial translational motions. So the initial kinetic energy of the axial translational motion is changed into the energy of the orthogonal vibrational and the rotational motions. Its resonance frequencies are dependent on the aspect ratio of the bottom rectangular GNF, the difference between the lengths of the GNF oscillator and the bottom rectangular GNF, and the initial velocity.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Oh Kuen Kwon, Hag-Wone Kim, Jeong Won Kang,