Article ID Journal Published Year Pages File Type
1786350 Current Applied Physics 2014 4 Pages PDF
Abstract

A ZnO thin-film transistor (TFT) with an MgO insulator was fabricated on a silicon (100) substrate using a radiofrequency magnetron sputtering system. The MgO insulator was deposited using the same deposition system; the total pressure during the deposition process was maintained at 5 mTorr, and the oxygen percentage of O2/(Ar + O2) was set at 30%, 50%, or 70%. The process temperature was maintained at below 300 °C. The dielectric constant of the MgO thin layer was approximately 11.35 with an oxygen percentage of 70%. This ZnO TFT displayed enhanced transistor properties, with a field-effect mobility of 0.0235 cm2 V−1 s−1, an ION/IOFF ratio of ∼105, and an SS value of 1.18 V decade−1; these properties were superior to those measured for the MgO insulators synthesized using oxygen percentages of 30% and 50%.

Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,