Article ID Journal Published Year Pages File Type
1786361 Current Applied Physics 2014 6 Pages PDF
Abstract

Transparent and conductive thin films of fluorine doped zinc tin oxide (FZTO) were deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. The effect of annealing temperature on the structural, electrical and optical performances of FZTO thin films has been studied. FZTO thin film annealed at 600 °C shows the decrease in resistivity 5.47 × 10−3 Ω cm, carrier concentration ∼1019 cm−3, mobility ∼20 cm2 V−1 s−1 and an increase in optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures which is well explained by Burstein–Moss effect. The optical transmittance of FZTO films was higher than 80% in all specimens. Work function (ϕ) of the FZTO films increase from 3.80 eV to 4.10 eV through annealing and are largely dependent on the amounts of incorporated F. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,