Article ID Journal Published Year Pages File Type
1786727 Current Applied Physics 2012 4 Pages PDF
Abstract

In this work, boron doped multi-walled carbon nanotubes (BMWNTs) were introduced as a Pt catalyst support due to their unique physicochemical properties. The effect of BMWNTs on methanol oxidation was investigated with different Pt loading contents. The surface and structural properties of the modified MWNT supports were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The Pt loading contents in the catalysts were confirmed by inductive coupled plasma-mass spectrometer (ICP-MS) and the morphological structures of the catalysts were analyzed by transmission electron microscopy (TEM). The electrocatalytic activity of Pt/MWNTs was investigated by cyclic voltammetry measurement. As a result, the boron oxide vapor reacted with MWNTS to form BMWNTs, which led to enhancing the properties, such as graphitization and electrochemical behaviors. Moreover, Pt deposited on BMWNTs exhibited better electrocatalytic activity than on MWNTs for methanol oxidation. Consequently, it was found that partial boron doped MWNTs could influence on the properties of the MWNTs, resulting in enhancing the electrocatalytic activity of the catalysts for DMFCs.

► Boron-doped MWNTs (BMWNTs) are prepared as a Pt catalyst support. ► Boron-doping could influence on surface properties of MWNT. ► Pt/BMWNTs exhibit better electrocatalytic activity than on Pt/MWNTs.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,