Article ID Journal Published Year Pages File Type
1786990 Current Applied Physics 2012 6 Pages PDF
Abstract

Alternating donor–acceptor type copolymers, poly[{5,11-di(9′-heptadecanyl)indolo[3,2-b]carbazole}-alt-{2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole-5,5′-diyl}] (PIC-TZ) and poly[{6,6′,12,12′-tetraoctylindeno[1,2-b]fluorene}-alt-{2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole-5,5′-diyl}] (PIF-TZ), were synthesized and examined for applications in polymeric photovoltaic cells. The polymers have a fused coplanar main backbone with good planarity for intermolecular packing and high charge mobility. The indolocarbazole and indenofluorene units contain two or four binding sites for alkyl substituents that have pronounced solution processiblity compared to the carbazole and fluorene moieties. The number-average molecular weights (Mn) of the synthesized polymers were determined to be 11,000 g/mol (PDI = 2.27) for PIC-TZ, and 17,000 g/mol (PDI = 1.77) for PIF-TZ. The optical band gap of PIC-TZ and PIF-TZ in film was determined to be 2.14 eV and 2.21 eV, respectively, and an electrochemical study confirmed the desirable HOMO/LUMO levels of the copolymers, which enabled efficient electron transfer and a high open circuit voltage (VOC) when blending them with fullerene derivatives. The space charge limited current mobility measurements showed a hole mobility of 10−3 cm2 V−1 s−1 for the copolymers. When the polymers were blended with [6,6]phenyl-C61-butyric acid methyl ester (PCBM), PIC-TZ showed the best performance with VOC, short-circuit current and power conversion efficiency of 0.86 V, 4.16 mA/cm2 and 1.64%, respectively, under AM 1.5G illumination conditions (100 mW cm−2).

► Alternating donor–acceptor type copolymers containing a thiazolothiazole moiety were synthesized and examined for applications in polymeric photovoltaic cells. ► The polymers have a fused coplanar main backbone with good planarity for intermolecular packing and high charge mobility. ► The indolocarbazole and indenofluorene units contain two or four binding sites for alkyl substituents, showing good solution processiblity. ► When the polymers were blended with PCBM, PIC-TZ showed a promising performance, showing power conversion efficiency of 1.64% under AM 1.5G.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,