Article ID Journal Published Year Pages File Type
1787326 Current Applied Physics 2008 10 Pages PDF
Abstract
Results of indentation-induced hardness testing studies on potassium zinc chloride crystals doped with Li+ ions, leading to an understanding of their mechanical behaviour, are presented. The Vickers hardness of these crystals for (1 0 0), (0 1 0) and (0 0 1) planes in the load range 20-160 g were studied. Load-independent values of hardness are estimated for the three crystallographic planes by applying Hays-Kendall's and Li-Bradt models. The results showed that: (1) for the three crystallographic planes the load-independent hardness obtained by Li-Bradt model is higher than that predicted by Hays-Kendall's, approach; (2) the load independent hardness of the (0 0 1) plane is higher than that of both (1 0 0) and (0 1 0) planes, (3) the values of load-independent hardness depend on Li+ concentrations in the K2ZnCl4 crystals, (4) the variations of crack length and crack morphology are described for studied crystal planes.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,