Article ID Journal Published Year Pages File Type
1788505 Current Applied Physics 2008 4 Pages PDF
Abstract
Ni doped ZnO (Zn1−xNixO) thin films were grown on quartz substrates via magnetron sputtering deposition process with the Ni concentrations of 5, 10 and 20 at.% in the films. The effects of Ni doping level and post annealing on the structural and magnetic properties of Zn1−xNixO films were investigated by means of X-ray diffraction (XRD), alternating gradient magnetometer (AGM) and photoluminescence (PL). A higher magnetic moment was acquired from the annealed Zn1−xNixO film doped with 5 at.% Ni, which was attributed to a better preferred orientation from a primary phase Ni2+:ZnO in the film. A relatively more pronounced ZnO(0 0 2) peak observed from the Zn1−xNixO film doped with 5 at.% Ni indicated a good crystallinity of the film, which was attributed to a lower level of Ni content in the film as well as the Ni2+ ions substituted for the Zn2+ ions to form Ni2+:ZnO. A slight shift in ZnO(0 0 2) peak position for the 5 and 10 at.% Ni doped ZnO films could be due to the distortion of the ZnO lattice caused by the Ni2+ ion substituents for the Zn2+ ions.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,