Article ID Journal Published Year Pages File Type
1788915 Current Applied Physics 2010 6 Pages PDF
Abstract

The frictional and indented behavior of a diamond asperity on a diamond plate was carried out using a molecular dynamics (MD) and experiments. The contact load, contact area, dynamic frictional force, and dynamic frictional coefficient increased as the contact interference increased at a constant loading velocity. The microcontact and frictional behavior can be evaluated between a rigid smooth hemisphere to a deformable rough flat plane by combined the deformed behavior of the asperity obtained from MD results with the fractal and statistic parameters. The comparison and the discrepancy of simulated results and nanoindentation and scratching experimental results will be discussed.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,