Article ID Journal Published Year Pages File Type
1789024 Current Applied Physics 2008 6 Pages PDF
Abstract

3-Aminopropyltriethoxysilane (APTES) thin films were prepared on the hydroxylated silicon substrate by a self-assembling process from formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of APTES thin films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. It was found that the macroscopic friction coefficients for coating times more than 1 h ranged from 0.177 to 0.3 whereas the value for short coating time was as high as 0.8. It was also found that the tribological behaviors of APTES films were sensitive to normal load and sliding velocity. SEM observation of the morphologies of worn surfaces indicates that the wear of silicon is characteristic of brittle fracture and severe abrasion. Differently, abrasion and micro-crack dominate the wear of APTES–SAM. The superior friction reduction and wear resistance of APTES films compared to the silicon substrate are attributed to good adhesion of the films to the substrate.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,