Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1789039 | Current Applied Physics | 2009 | 5 Pages |
Abstract
We fabricated point-contacted a-Si:H(p)/c-Si(n) heterojunction solar cells using patterned SiO2 and investigated their electrical properties using the light current-voltage (I-V) curve and Suns-Voc measurements. The light I-V curves showed bias-dependent changes according to the applied voltage in the point-contacted cells, especially in the samples with a long distance between the point-contacted junctions. The Suns-Voc measurements showed that the bias-dependence of the light I-V curves did not originate from the recombination in the SiO2/Si or a-Si:H(p)/c-Si(n) interface, but from the series resistances. It is possible to explain the bias-dependent light I-V curve in terms of the conductivity of a-Si:H(p) and difference in the electrical contact properties between a-Si:H(p), ZnO and c-Si(n). These results mean that the electrical properties of the a-Si:H(p) layer and the contact properties with this layer are also critical to obtain a high Jsc and fill factor in n-type based Si heterojunction solar cells.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Young-Woo Ok, Min-Gu Kang, Donghwan Kim, Jeong Chul Lee, Kyung Hoon Yoon,