Article ID Journal Published Year Pages File Type
180017 Electrochemistry Communications 2010 4 Pages PDF
Abstract

Reticular tin nanoparticle-dispersed carbon (Sn/C) nanofibers were fabricated by stabilization of electrospun SnCl4/PAN composite fibers and subsequent carbonization at different temperatures. These Sn/C composite nanofibers used as anode materials for rechargeable lithium-ion batteries (LIBs) show that the Sn/C nanofibers at 700 and 850 °C present much higher charge (785.8 and 811 mA h g−1) and discharge (1211.7 and 993 mA h g−1) capacities than those at 550 and 1000 °C and the as-received CNFs at 850 °C, corresponding to coulombic efficiencies of 64.9% and 81.7%, respectively. The superior electrochemical properties of the intriguing Sn/C nanofibers indicate a promising application in high performance Li-ion batteries.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,