Article ID Journal Published Year Pages File Type
180162 Electrochemistry Communications 2010 4 Pages PDF
Abstract

A phase inversion process was used to co-extrude cerium–gadolinium oxide (Ce0.9Gd0.1O1.95)/NiO–CGO dual-layer hollow fibres (HF), which were then sintered to form, respectively, the electrolyte and high porosity anode precursor of a solid oxide fuel cell (SOFC) with anode inner diameter of 0.8 mm. Graded CGO–lanthanum strontium cobalt ferrite (La0.6Sr0.4Fe0.8Co0.2O3) cathode layers were then painted onto the CGO electrolyte to form a micro-tubular HF-SOFC. With a carefully designed anode current collector, this produced maximum power densities of 1186–5864 W m− 2 at 450–570 °C. High magnification imaging analysis revealed large three-phase boundary regions within the anode, a dense electrolyte layer and clearly highlighted the multiple CGO–LSCF cermet and pure LSCF cathode layers. The performance of the HF-SOFC with a twenty millimetre active length showed no degradation after four thermal cycles between 300 °C and 570 °C.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,