Article ID Journal Published Year Pages File Type
1802396 Journal of Magnetism and Magnetic Materials 2008 4 Pages PDF
Abstract
Algebraic soft-decision Reed-Solomon (RS) decoding algorithms with improved error-correcting capability and comparable complexity to standard algebraic hard-decision algorithms could be very attractive for possible implementation in the next generation of read channels. In this work, we investigate the performance of a low-complexity Chase (LCC)-type soft-decision RS decoding algorithm, recently proposed by Bellorado and Kavčić, on perpendicular magnetic recording channels for sector-long RS codes of practical interest. Previous results for additive white Gaussian noise channels have shown that for a moderately long high-rate code, the LCC algorithm can achieve a coding gain comparable to the Koetter-Vardy algorithm with much lower complexity. We present a set of numerical results that show that this algorithm provides small coding gains, on the order of a fraction of a dB, with similar complexity to the hard-decision algorithms currently used, and that larger coding gains can be obtained if we use more test patterns, which significantly increases its computational complexity.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,