Article ID Journal Published Year Pages File Type
1803859 Journal of Magnetism and Magnetic Materials 2008 9 Pages PDF
Abstract

We present the results of the Monte Carlo simulations of magnetic nanotubes, which are based on the plane structures with the square unit cell at low temperatures. The spin configurations, thermal equilibrium magnetization, magnetic susceptibility and the specific heat are investigated for the nanotubes of different diameters, using armchair or zigzag edges. The dipolar interaction, Heisenberg model interaction and also their combination are considered for both ferromagnetic and anti-ferromagnetic cases. It turns out that the magnetic properties of the nanotubes strongly depend on the form of the rolling up (armchair or zigzag). The effect of dipolar interaction component strongly manifests itself for the small radius nanotubes, while for the larger radius nanotubes the Heisenberg interaction is always dominating. In the thermodynamic part, we have found that the specific heat is always smaller for the nanotubes with smaller radii.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,