Article ID Journal Published Year Pages File Type
180405 Electrochemistry Communications 2010 5 Pages PDF
Abstract

Unpyrolyzed, non noble metal catalysts for Oxygen Reduction Reaction (ORR), denoted MeOx–CoP/C, were obtained using a two-step procedure. The procedure consisted of a synthesis of carbon-supported transition metal (Me═Co, or Ni, or Fe) nanoparticles, followed by adsorption of cobalt porphyrin (CoP). TEM and XPS analyses confirm the formation of nanoparticles and the presence of transition metal oxides. Rotating disk electrode measurements showed that the as-synthesized materials exhibit catalytic ORR activity in acidic medium toward oxygen reduction, which is higher than that of cobalt porphyrin on carbon. This reveals that the metal oxide nanoparticles enhance the activity of the metalloporphyrin without being electroactive themselves. The catalytic activity follows the sequence: CoOx–CoP/C > NiOx–CoP/C > FeOx–CoP/C, showing the influence of nature of the transition metal on the enhancing effect. The presence of a cobalt center incorporated in the macrocycle was found to be essential to the oxygen reduction reaction, appearing thus to be the catalytic active site of the reaction. Our data suggest the ORR occurs at a single active site.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,