Article ID Journal Published Year Pages File Type
180421 Electrochemistry Communications 2010 4 Pages PDF
Abstract

Nanorods of MnO2, Mn3O4, Mn2O3 and MnO are synthesized by hydrothermal reactions and subsequent annealing. It is shown that though different oxides experience distinct phase transition processes in the initial discharge, metallic Mn and Li2O are the end products of discharge, while MnO is the end product of recharge for all these oxides between 0.0 and 3.0 V vs. Li+/Li. Of these 4 manganese oxides, MnO is believed the most promising anode material for lithium ion batteries while MnO2 is the most promising cathode material for secondary lithium batteries.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , ,