Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1806256 | Magnetic Resonance Imaging | 2015 | 24 Pages |
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), “diffusion” (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Joseph Goveas, Laurence O'Dwyer, Mario Mascalchi, Mirco Cosottini, Stefano Diciotti, Silvia De Santis, Luca Passamonti, Carlo Tessa, Nicola Toschi, Marco Giannelli,