Article ID Journal Published Year Pages File Type
1806422 Magnetic Resonance Imaging 2014 14 Pages PDF
Abstract

The critical challenge in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the trade-off between spatial and temporal resolution due to the limited availability of acquisition time. To address this, it is imperative to under-sample k-space and to develop specific reconstruction techniques. Our proposed method reconstructs high-quality images from under-sampled dynamic k-space data by proposing two main improvements; i) design of an adaptive k-space sampling lattice and ii) edge-enhanced reconstruction technique. A high-resolution data set obtained before the start of the dynamic phase is utilized. The sampling pattern is designed to adapt to the nature of k-space energy distribution obtained from the static high-resolution data. For image reconstruction, the well-known compressed sensing-based total variation (TV) minimization constrained reconstruction scheme is utilized by incorporating the gradient information obtained from the static high-resolution data. The proposed method is tested on seven real dynamic time series consisting of 2 breast data sets and 5 abdomen data sets spanning 1196 images in all. For data availability of only 10%, performance improvement is seen across various quality metrics. Average improvements in Universal Image Quality Index and Structural Similarity Index Metric of up to 28% and 24% on breast data and about 17% and 9% on abdomen data, respectively, are obtained for the proposed method as against the baseline TV reconstruction with variable density random sampling pattern.

Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,