Article ID Journal Published Year Pages File Type
1806840 Magnetic Resonance Imaging 2010 12 Pages PDF
Abstract

The non-local means (NLM) filter removes noise by calculating the weighted average of the pixels in the global area and shows superiority over existing local filter methods that only consider local neighbor pixels. This filter has been successfully extended from 2D images to 3D images and has been applied to denoising 3D magnetic resonance (MR) images. In this article, a novel filter based on the NLM filter is proposed to improve the denoising effect. Considering the characteristics of Rician noise in the MR images, denoising by the NLM filter is first performed on the squared magnitude images. Then, unbiased correcting is carried out to eliminate the biased deviation. When performing the NLM filter, the weight is calculated based on the Gaussian-filtered image to reduce the disturbance of the noise. The performance of this filter is evaluated by carrying out a qualitative and quantitative comparison of this method with three other filters, namely, the original NLM filter, the unbiased NLM (UNLM) filter and the Rician NLM (RNLM) filter. Experimental results demonstrate that the proposed filter achieves better denoising performance over the other filters being compared.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,