Article ID Journal Published Year Pages File Type
1807279 Magnetic Resonance Imaging 2009 6 Pages PDF
Abstract
The purpose of this study was to compare observer interpreted steady-state coherent coronal images and gadolinium-enhanced axial images in terms of the detection and grading of esophageal varices. Magnetic resonance imaging (MRI) and gastrointestinal endoscopy were performed within 2 weeks in 90 patients with chronic liver damage, including 55 with untreated esophageal varices, for periodic screening purposes. Two blinded readers retrospectively reviewed T1- and T2-weighted images with gadolinium-enhanced (gadolinium image set) and steady-state coherent (coherent image set) images. Sensitivity for the detection of esophageal varices was higher (P<.001) in the gadolinium image set (76%) than in the coherent image set (35%); on the other hand, specificity was higher (P<.001) in the coherent image set (91%) than in the gadolinium image set (66%). Furthermore, area under the ROC curve was higher for the gadolinium image set (Az=0.823) than the coherent image set (Az=0.761) (P=.48). Moderate and weak positive correlations with endoscopic grades were found for the gadolinium image (r=0.48, P<.01) and coherent image sets (r=0.34, P=.018). The addition of steady-state coherent imaging to the current routine liver imaging protocol did not improve the detection or grading of esophageal varices, whereas gadolinium-enhanced imaging was found to be potentially valuable. Nevertheless, endoscopy was confirmed to be mandatory in patients with esophageal varices suspected by MRI of the liver.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,