Article ID Journal Published Year Pages File Type
1807482 Magnetic Resonance Imaging 2007 7 Pages PDF
Abstract

In this communication, a theoretical framework for quality control and parameter optimization in diffusion tensor imaging (DTI) is presented and validated. The approach is based on the analytical error propagation of the mean diffusivity (Dav) obtained directly from the diffusion-weighted data acquired using rotationally invariant and uniformly distributed icosahedral encoding schemes. The error propagation of a recently described and validated cylindrical tensor model is further extrapolated to the spherical tensor case (diffusion anisotropy ∼0) to relate analytically the precision error in fractional tensor anisotropy (FA) with the mean diffusion-to-noise ratio (DNR). The approach provided simple analytical and empirical quality control measures for optimization of diffusion parameter space in an isotropic medium that can be tested using widely available water phantoms.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,