Article ID Journal Published Year Pages File Type
1807709 Magnetic Resonance Imaging 2010 10 Pages PDF
Abstract

The concept of density-weighted imaging and parallel acquisition for effective density-weighted (PLANED) imaging was transferred to saturation recovery (SR) sequences, in order to increase the SNR in first-pass myocardial perfusion imaging. Filtering in combination with density-weighted imaging allows SNR-optimized data weighting and the free choice of the corresponding spatial response function (SRF) simultaneously. This method was evaluated in simulations and applied successfully to phantom and in vivo first-pass myocardial perfusion studies. Unfiltered, Cartesian sampled images were compared to images acquired with SR-PLANED, which has been adjusted to result in an identical SRF as the Cartesian imaging. SNR-optimized SR-PLANED imaging improved the SNR up to 15% without changing acquisition time, the SRF or the field of view (FOV). The presented method provides high image quality and optimized SNR for first-pass myocardial perfusion imaging.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,