Article ID Journal Published Year Pages File Type
1807790 Magnetic Resonance Imaging 2007 4 Pages PDF
Abstract

This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-μm average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time TE=40 ms, and 6–10% in consolidated porous media for TE=10 ms, over the range 0.8–1.8 bar for a spatial resolution of 0.1 mm3 and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,