Article ID Journal Published Year Pages File Type
1807915 Magnetic Resonance Imaging 2007 7 Pages PDF
Abstract

Microstrip transmission-line loop arrays have been recently proposed for parallel imaging at ultrahigh fields due to their advantages in element decoupling and to their increased coil quality factor. In the microstrip loop array design, interconnecting capacitors become necessary to further improve the decoupling between the adjacent elements when nonoverlapped loops are placed densely. However, at ultrahigh fields, the capacitance required for sufficient decoupling is very small. Hence, the isolations between the elements are usually not optimized and the array is extremely sensitive to the load. In this study, a theoretical model is developed to analyze the capacitive decoupling circuit. Then, a novel tunable loop microstrip (TLM) array that can accommodate capacitive decoupling more easily at ultrahigh fields is proposed. As an example, a four-element TLM array is constructed at 7 T. In this array, the decoupling capacitance is increased to a more reasonable value. Isolation between the adjacent elements is better than −37 dB with the load. The performance of this TLM array is also demonstrated by MRI experiments.

Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,