Article ID Journal Published Year Pages File Type
180873 Electrochemistry Communications 2009 4 Pages PDF
Abstract

It has recently been discovered that many microbial species have the capacity to connect their metabolism to solid electrodes, directly exchanging electrons with them through membrane-bound redox compounds, nevertheless such a direct electron transfer pathway has been evoked rarely in the domain of microbial corrosion. Here was evidenced for the first time that the bacterium Geobacter sulfurreducens is able to increase the free potential of 304 L stainless steel up to 443 mV in only a few hours, which represents a drastic increase in the corrosion risk. In contrast, when the bacterial cells form a locally well-established biofilm, pitting potentials were delayed towards positive values. The microscopy pictures confirmed an intimate correlation between the zones where pitting occurred and the local settlement of cells. Geobacter species must now be considered as key players in the mechanisms of corrosion.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,