Article ID Journal Published Year Pages File Type
1809069 Physica B: Condensed Matter 2015 10 Pages PDF
Abstract

A novel method to calculate the quantum transmission, resonance and eigenvalue energies forming the sub-bands structure of non-symmetrical, non-periodical semiconducting heterostructure potential has been proposed in this paper. The method can be applied on a multilayer system with varying thickness of the layer and effective mass of electrons and holes. Assuming an approximated effective mass and using Bastard's boundary conditions, Schrödinger equation at each media is solved and then using a confirmed recurrence method, the transmission and reflection coefficients and the energy quantification condition are expressed. They are simple combination of coupled equations. Schrödinger's equation solutions are Airy functions or plane waves, depending on the electrical potential energy slope. To illustrate the feasibility of the proposed method, the N barriers – (N−1) wells structure for N=3, 5, 8, 9, 17 and 35 are studied. All results show very good agreements with previously published results obtained from applying different methods on similar systems.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,