Article ID Journal Published Year Pages File Type
1809330 Physica B: Condensed Matter 2015 8 Pages PDF
Abstract

In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler–Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,