Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
181130 | Electrochemistry Communications | 2008 | 4 Pages |
An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol–gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL. ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles. The response of the ECL biosensor was linear over the range 1 μM to 5 mM with a detection limit of 0.2 μM glucose and showed satisfying reproducibility, stability and selectivity.