Article ID Journal Published Year Pages File Type
181138 Electrochemistry Communications 2008 4 Pages PDF
Abstract

Here we report on the hierarchical porous rutile TiO2 nanorod micospheres as an anode material for lithium-ion batteries. The resulting hierarchical porous rutile TiO2 nanorod microspheres possessed much higher reversible capacity, cycling stability and rate capability than nanosized rutile TiO2 previously reported in the literatures. These good electrochemical performances may be attributed to the facile diffusion of Li+ ions from outside through the porous channels into the TiO2 nanorods in the microspheres and the high electrode–electrolyte contact area offered by hierarchical porous microspheres with a large specific surface area.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,