Article ID Journal Published Year Pages File Type
181276 Electrochemistry Communications 2009 4 Pages PDF
Abstract

A cathode-supported electrolyte film was fabricated by tape casting and co-sintering techniques. (La0.8Sr0.2)0.95MnO3 (LSM95), LSM95/Zr0.89Sc0.1Ce0.01O2−x (SSZ), and SSZ were used as materials of cathode substrate, cathode active layer, and electrolyte, respectively. CuO–NiO–SSZ composite anode was deposited on SSZ surface by screen-printing and sintered at 1250 °C for 2 h. The effects of CuO addition to NiO–SSZ anode on the performance of cathode-supported SOFCs were investigated. CuO can effectively improve the sintering activity of NiO–SSZ. The assembled cells were electrochemically characterized with humidified H2 as fuel and O2 as oxidant. With 4 wt.% CuO addition, the ohmic resistance decreased from 3 to 0.46 Ω cm2, and at the same time the polarization resistance decreased from 3.4 to 0.74 Ω cm2. In comparison with the cell without CuO, the maximum power density at 850 °C increased from 0.054 to 0.446 W cm−2 with 4 wt.% CuO addition.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,