Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
181291 | Electrochemistry Communications | 2009 | 5 Pages |
MgO polyhedral nanocages and nanocrystals, synthesized by non-catalytic simple thermal evaporation process, were used to fabricate high-sensitive amperometric glucose biosensor which showed a high and reproducible sensitivity of 31.6 μA μM−1 cm−2 with a response time less than 5 s, linear dynamic range from 1.0 to 9.0 μM and correlation coefficient of R = 0.9993. The detection limit of fabricated biosensor (based on S/N ratio = 3) was estimated to be 68.3 ± 0.02 nM. To the best of our knowledge, this is the first report which demonstrates the use of MgO nanostructures for the fabrication of glucose biosensor; hence, this work opens a new way to utilize MgO nanostructures as an efficient electron mediator to fabricate efficient glucose biosensors.