Article ID Journal Published Year Pages File Type
181363 Electrochemistry Communications 2009 4 Pages PDF
Abstract

Mn-based oxide-loaded porous carbon nanofiber anodes, exhibiting large reversible capacity, excellent capacity retention, and good rate capability, are fabricated by carbonizing electrospun polymer/Mn(CH3COO)2 composite nanofibers without adding any polymer binder or electronic conductor. The excellent electrochemical performance of these organic/inorganic nanocomposites is a result of the unique combinative effects of nano-sized Mn-based oxides and carbon matrices as well as the highly-developed porous composite nanofiber structure, which make them promising anode candidates for high-performance rechargeable lithium-ion batteries.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,