Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
181420 | Electrochemistry Communications | 2008 | 4 Pages |
Abstract
Water-soluble iron(III) meso-tetrakis(N-methylpyridinum-4-yl)porphyrin (FeTMPyP) was successfully immobilized on single-walled carbon nanotubes (SWNTs) via 1-pyrenebutyric acid (PBA). The formed SWNTs/PBA/FeTMPyP film showed an enhanced electrocatalytic peak at −0.70 V and −0.17 V towards reduction of nitric oxide and oxygen, respectively. SWNTs accelerated the electron transfer between FeTMPyP and electrode, and increased the amount of FeTMPyP adsorbed. FeTMPyP acted as a catalyst to decrease the reduction potential, exhibiting a synergy in electrocatalysis. The excellent electrocatalytic behaviors made SWNTs/porphyrin nanocomposite have a promising potential in fabricating new type of biosensors.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Wenwen Tu, Jianping Lei, Huangxian Ju,