Article ID Journal Published Year Pages File Type
181505 Electrochemistry Communications 2009 4 Pages PDF
Abstract

The sodium lithium titanate with composition Na2Li2Ti6O14 has been synthesized by a sol–gel method. Thermogravimetric analysis and differential thermal analysis (TG–DTA) of the thermal decomposition process of the precursor and X-ray diffraction (XRD) data indicate the crystallization of sodium lithium titanate has occurred at about 600 °C. Electrochemical lithium insertion into Na2Li2Ti6O14 for lithium ion battery has been investigated for the first time. These results indicate the discharge and charge potential plateaus are about 1.3 V. The initial discharge capacity is much higher than the charge capacity and irreversible capacity exists in the voltage window 1–3 V. Subsequently, the discharge capacity decreases slowly, but the charge capacity increases slightly in the following cycles. After a few cycles, the specific capacity remains almost constant values and the sample exhibits the excellent retention of capacity on cycling.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,