Article ID Journal Published Year Pages File Type
181643 Electrochemistry Communications 2008 4 Pages PDF
Abstract

Gold nanorods (GNRs) were synthesized by a seed–mediated growth approach followed by TEOS polymerization leading to the formation of silica layer surrounding the gold nanorod core. TEM images showed that the silica-coated gold nanorods (GNRs@SiO2) were dispersed with an average aspect ratio of 3.1 for the GNRs cores and a uniform thickness of the silica shell. The core/shell nanocomposites were further used as efficient supports for the immobilization of hemoglobin (Hb) to fabricate a novel biosensor. The immobilized Hb showed an enhanced electron transfer for its heme Fe(III) to Fe(II) redox couple. This biosensor showed an excellent bioelectrocatalytic activity towards H2O2 with a linear range from 8.0 × 10−7 to 6.1 × 10−5 M, and the detection limit was 6.0 × 10−8 M at 3σ. The apparent Michaelis–Menten constant of the immobilized hemoglobin was calculated to be 0.13 mM.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,