Article ID Journal Published Year Pages File Type
181697 Electrochemistry Communications 2007 6 Pages PDF
Abstract

We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,