Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
181715 | Electrochemistry Communications | 2008 | 4 Pages |
A strategy of protein entrapment within the bicontinuous gyroidal mesoporous carbon (BGMC) matrix is demonstrated to probe the direct electrochemistry of myoglobin. Large surface area and remarkable electro-catalytic properties of BGMC make it a suitable candidate for high loading of protein molecules and the promotion of heterogeneous electron transfer (ET). In contrast with carbon nanotubes and general carbon mesoporous materials, BGMC is of a relatively isotropic graphited structure and thus can more effectively enhance the heterogeneous ET. Furthermore, a series of BGMCs with different pore sizes (2–7 nm) is designed and synthesized to study the influence of pore size on the immobilization of redox proteins and on the electron transfer.